
Session 2: Introduction to contin�
uous time economics

Tianhao Zhao

Macroeconomics II

Beihang University
April, 2025



Contents

Contents
Session 2: Introduction to continuous time economics . . . . . . . . . . . . . . . . . . 0

Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Why continuous time? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
What mathematical tools are involved? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Reading list & expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Review of stochastic calculus basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
From discrete time to continuous time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Dynamic programming in continuous time . . . . . . . . . . . . . . . . . . . . . . . . . 23
HJB equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Solving policy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Dynamic analysis in continuous time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
(Optional) Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Frontier topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Macroeconomics II, Beihang University 1 / 70



Contents

Plan

• Why continuous time?

• Review: stochastic calculus

• From discrete time to continuous time

1. How to conceptually bridge the two?

2. How to mathematically define continuous time problems?

3. How to solve continuous time problems?

• Hamilton-Jacobi-Bellman (HJB) equation

• Maximum principle

• Deterministic steady state analysis

• (Optional) Introduction to numerical methods

Macroeconomics II, Beihang University 2 / 70



Contents

Why continuous time?

• The real world is continuous time

• Many advantages

‣ Analytical tractability

‣ Richer modeling of intertemporal decisions and uncertainty

‣ Consistent with intractable complex discrete time models

• Standard in finance and many fields e.g. Merton’s portfolio problem

• “Renaissance”

‣ More departments are teaching continuous time in graduate even
undergraduate courses

‣ Distributional economics by Moll, Kaplan, and others

‣ Heterogenous Agent New Keynesian (HANK) models
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What mathematical tools are involved?

Looks good, but the math is a bit scary!

• Stochastic calculus
‣ Brownian motion
‣ Ito’s lemma
‣ Stochastic differential equa-

tions (SDEs)
‣ …

• Stochastic control
‣ Maximum principle
‣ Hamilton-Jacobi-Bellman

(HJB) equation
‣ Dynamic programming
‣ …

• Partial differential equations
(PDE) and dynamic systems
‣ 2nd order non-linear and

pseudo-linear PDEs
‣ Kolmogorov equations
‣ …

• Numerical PDE
‣ Finite difference methods
‣ Barles & Souganidis (1991)

monotonic scheme analysis
‣ …

But don’t worry, only a few of them are needed in this introductory session.
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Reading list & expectations

Textbook & notes:

1. Benjamin Moll’s notes: https://benjaminmoll.com/lectures/

2. Stokey, N. L. (2008). The Economics of Inaction: Stochastic Control
models with fixed costs. Princeton University Press.

Suggested readings:

1. Yong, J., & Zhou, X. Y. (2012). Stochastic controls: Hamiltonian sys�
tems and HJB equations (Vol. 43). Springer Science & Business Media.

2. Kaplan, G., Moll, B., & Violante, G. L. (2018). Monetary policy
according to HANK. American Economic Review, 108(3), 697–743.

3. Brunnermeier, M. K., & Sannikov, Y. (2014). A macroeconomic model
with a financial sector. American Economic Review, 104(2), 379–421.

4. Glawion, R. (2023). Sequence-Space Jacobians in Continuous Time.
Available at SSRN 4504829.
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Reading list & expectations

After this session, you should be able to:

1. Understand core concepts and math formulations of continuous time
economics

2. Understand standard economic models in continuous time and connect
them to discrete time counterparts

3. Define economic problems in continuous time as stochastic control
problems and HJB equations

4. Analytically solve the policy functions given an HJB equation

5. Analytically solve steady states (long-run equilibrium) of simple deter-
ministic models

6. Learn where to find more information about continuous time economics
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Review of stochastic calculus basics

Definition: A continuous time process {𝑊(𝑡)}𝑡≥0 taking values in ℝ is
called a standard Brownian motion (or standard Wiener process) if
1. 𝑊(0) = 0
2. 𝑊(𝑡) − 𝑊(𝑠) is independent of the past history {𝑊(𝑟)}𝑟≤𝑠 for 0 ≤ 𝑠 < 𝑡
3. 𝑊(𝑡) − 𝑊(𝑠) ∼ 𝒩(0, 𝑡 − 𝑠) for 0 ≤ 𝑠 < 𝑡
4. 𝑊(𝑡) is continuous in 𝑡 w.p.1

Multivariate Brownian motion: 𝑊(𝑡) = (𝑊1(𝑡), 𝑊2(𝑡), …, 𝑊𝑛(𝑡)) is a
vector of 𝑛 Brownian motions (possibly correlated)

Figure 1: Sample paths of a standard Brownian motion¹

¹Source: Financial Mathematics: A Comprehensive Treatment in Continuous Time Volume II
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Review of stochastic calculus basics

A 𝑛-dimensional stochastic process 𝑋(𝑡) is called a diffusion process if
there exist functions 𝜇(𝑡, 𝑥) and 𝜎(𝑡, 𝑥) such that

d𝑋(𝑡) = 𝜇(𝑡, 𝑋(𝑡)) d𝑡 + 𝜎(𝑡, 𝑋(𝑡)) d𝑊(𝑡)

where
• 𝑊(𝑡) is an 𝑚-dimensional Brownian motion
• 𝜇(𝑡, 𝑋(𝑡)) ↦ ℝ𝑛 is a 𝑛-dimensional drift coefficient
• 𝜎(𝑡, 𝑋(𝑡)) ↦ ℝ𝑛×𝑚 is the diffusion/volatility coefficient

The equation is called a stochastic differential equation (SDE)

Properties:
• (Markovian) A diffusion process is a Markov process
• (Continuity) A diffusion process is continuous in 𝑡 w.p.1
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Review of stochastic calculus basics

Some commonly used processes:

• Ornstein-Uhlenbeck (OU) process: 𝑑𝑋(𝑡) = 𝜃(𝜇 − 𝑋(𝑡))d𝑡 + 𝜎d𝑊(𝑡)
‣ Useful for modeling mean-reverting processes
‣ Counterpart of AR(1) process: 𝑥𝑡+1 = 𝜌𝑥𝑡 + (1 − 𝜌)𝑥 + 𝜀𝑡+1
‣ Solution: 𝑋(𝑡) = 𝜇 + (𝑋(0) − 𝜇) exp(−𝜃𝑡) + 𝜎 ∫𝑡

0
exp(−𝜃(𝑡 − 𝑠))d𝑊(𝑠)

• Geometric Brownian motion (GBM): 𝑑𝑋(𝑡)
𝑋(𝑡) = 𝜇d𝑡 + 𝜎d𝑊(𝑡)

‣ Useful for modeling asset prices
‣ Random walk with drift, non-negative
‣ Solution: 𝑋(𝑡) = 𝑋(0) exp((𝜇 − 𝜎2

2 )𝑡 + 𝜎𝑊(𝑡))

• Cox-Ingersoll-Ross (CIR) process: 𝑑𝑋(𝑡) = 𝜃(𝜇 − 𝑋(𝑡))d𝑡 + 𝜎√𝑋(𝑡)d𝑊(𝑡)
‣ Useful for modeling interest rates
‣ Non-negative, mean-reverting

• (Extra) Poisson process aka continuous-time Markov chain
‣ Useful for modeling discrete state processes (e.g. unemployment)
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Review of stochastic calculus basics

• Ito’s lemma is the foundation
of stochastic calculus

• Stochastic version of the chain
rule in calculus

• Allows us to compute the infini-
tesimal change in a function of a
stochastic process

• Used to derive the dynamics of a
function of a diffusion process

Kiyoshi Ito (伊藤 清)
1915-2008

1970 at Cornell University
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Review of stochastic calculus basics

Let 𝑋(𝑡) be a scalar diffusion process

𝑑𝑋(𝑡) = 𝜇(𝑡, 𝑋(𝑡))d𝑡 + 𝜎(𝑡, 𝑋(𝑡))d𝑊(𝑡)

and 𝑓(𝑡, 𝑥) be a twice continuously differentiable function. Then 𝑓(𝑡, 𝑋(𝑡))
is also a diffusion process and satisfies

d𝑓 = (𝜕𝑓
𝜕𝑡

+ 𝜕𝑓
𝜕𝑥

𝜇 + 𝜎2

2
𝜕2𝑓
𝜕𝑥2 )d𝑡 + 𝜎𝜕𝑓

𝜕𝑥
d𝑊(𝑡)

Useful rules:

• d𝑡 ⋅ d𝑡 = 0, d𝑡 ⋅ d𝑊(𝑡) = 0, and d𝑊(𝑡) ⋅ d𝑊(𝑡) = d𝑡
• Addition rule: d(𝑋 ± 𝑌 ) = d𝑋 ± d𝑌
• Product rule: d(𝑋𝑌 ) = 𝑋d𝑌 + 𝑌 d𝑋 + d𝑋d𝑌
• Quotient rule: d(𝑋

𝑌 ) = d𝑋
𝑌 − 𝑋d𝑌

𝑌 2 + 𝑋d𝑌 2

𝑌 3 − d𝑋d𝑌
𝑌 2
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Review of stochastic calculus basics

Example

Let 𝑝(𝑡) be the process of house price, ℎ(𝑡) be the process of household
housing stock:

d𝑝(𝑡)
𝑝(𝑡)

= 𝜇𝑝d𝑡 + 𝜎𝑝d𝑊(𝑡)

dℎ(𝑡) = 𝐼d𝑡

What is the SDE of the housing value 𝑉 (𝑡) ≔ 𝑝(𝑡)ℎ(𝑡)?

d𝑉 (𝑡) = 𝑝(𝑡)dℎ(𝑡) + ℎ(𝑡)d𝑝(𝑡) + d𝑝(𝑡)dℎ(𝑡)

= 𝑝(𝑡) ⋅ [𝐼d𝑡] + ℎ(𝑡) ⋅ [𝜇𝑝𝑝(𝑡)d𝑡 + 𝜎𝑝𝑝(𝑡)d𝑊(𝑡)] + [𝐼d𝑡] ⋅ [𝜇𝑝𝑝(𝑡)d𝑡 + 𝜎𝑝𝑝(𝑡)d𝑊(𝑡)]

= {𝑝(𝑡) ⋅ 𝐼d𝑡 + 𝜇𝑝ℎ(𝑡)𝑝(𝑡)d𝑡 + ℎ(𝑡)𝜎𝑝𝑝(𝑡)d𝑊(𝑡)} + {𝐼𝜇𝑝𝑝(𝑡)d𝑡 ⋅ d𝑡 + 𝐼𝜎𝑝𝑝(𝑡)d𝑡 ⋅ d𝑊(𝑡)}

= [𝑝(𝑡) ⋅ 𝐼 + 𝜇𝑝𝑉 (𝑡)]d𝑡 + 𝜎𝑝𝑉 (𝑡)d𝑊(𝑡) + {0 + 0}
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Review of stochastic calculus basics

Multivariate Ito’s lemma:

Let

𝑑𝑿(𝑡) = 𝝁(𝑡, 𝑿(𝑡))d𝑡 + 𝝈(𝑡, 𝑿(𝑡))d𝑾(𝑡)
𝑿(𝑡) ∈ ℝ𝑛, 𝑾(𝑡) ∈ ℝ𝑚, 𝝁 ↦ ℝ𝑛, 𝝈 ↦ ℝ𝑛×𝑚

and 𝑓(𝑡, 𝒙) ↦ ℝ is a twice continuously differentiable function. Then

𝑑𝑓(𝑡, 𝑿(𝑡)) = {𝜕𝑓
𝜕𝑡

+ (∇𝑋𝑓)𝑇 d𝑿(𝑡) + 1
2
(d𝑿(𝑡))𝑇 (∇2

𝑋𝑓)d𝑿(𝑡)}d𝑡 + (∇𝑋𝑓)𝑇 𝝈d𝑩(𝑡)

where
• ∇𝑋𝑓 ∈ ℝ𝑛 is the gradient of 𝑓 with respect to 𝑋
• ∇2

𝑋𝑓 ∈ ℝ𝑛×𝑛 is the Hessian of 𝑓 with respect to 𝑋

• Useful in models with multiple uncertainties. FYI, no need to memorize
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From discrete time to continuous time

In macroeconomic models, we usually care lifetime problems like:

𝑣0(𝑥0) = max
{𝑐𝑡}𝑡

𝔼0{∑
𝑇

𝑡=0
𝛽𝑡𝑢(𝑡, 𝑐𝑡, 𝑥𝑡) + 𝑓(𝑥𝑇 )}

s.t. 𝑥𝑡+1 = 𝑔(𝑡, 𝑥𝑡, 𝑐𝑡)
𝑐𝑡 ∈ ℂ𝑡, 𝑥𝑡 ∈ 𝕏𝑡

• 𝑥0 is the initial state
• 𝑥 is the state vector (e.g. capital, asset)
• 𝑐 is the control vector (e.g. consumption, investment)
• 𝑢(𝑡, 𝑐, 𝑥) is the instantaneous utility function
• 𝑓(𝑥) is the terminal utility function
• 𝑔(𝑡, 𝑥, 𝑐) is the state equation or law of motion (e.g. budget constraint)
• ℂ𝑡 is the set of admissible controls, and 𝕏𝑡 is the set of admissible states

(state constraints)
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From discrete time to continuous time

Example: Neo-classical growth model

𝑣0(𝑘0) = max
{𝑐𝑡}𝑡

𝔼0{∑
∞

𝑡=0
𝛽𝑡 log(𝑐𝑡)}

s.t. ∀𝑡, 𝑘𝑡+1 = (1 − 𝛿)𝑘𝑡 + 𝑘𝛼
𝑡 − 𝑐𝑡

𝑐𝑡 ≥ 0, 𝑘𝑡 ≥ 0

where
• planning horizon: 𝑇 = ∞
• state variables: 𝑘𝑡 (capital)
• control variables: 𝑐𝑡 (consumption)
• instantaneous utility: log(𝑐)
• terminal utility: 𝑓(𝑥) = lim𝑡→∞ 𝛽𝑡 log(𝑐𝑡) = 0 (transversality condition)
• Admissible sets

‣ ℂ𝑡 = {𝑐𝑡 ≥ 0}
‣ 𝕏𝑡 = {𝑘𝑡 ≥ 0}
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From discrete time to continuous time

By Bellman’s principle, we can rewrite the problem as the following
dynamic programming (DP) problem (aka Bellman equation):

𝑣(𝑡, 𝑥) = max
𝑐𝑡

𝔼𝑡{𝑢(𝑡, 𝑐𝑡, 𝑥𝑡) + 𝛽𝑣(𝑡 + 1, 𝑥𝑡+1)}

s.t. 𝑥𝑡+1 = 𝑔(𝑡, 𝑥𝑡, 𝑐𝑡); 𝑐𝑡 ∈ ℂ𝑡, 𝑥𝑡 ∈ 𝕏𝑡

If the problem is time homogeneous¹, we can drop the time index:

𝑣(𝑥) = max
𝑐

𝔼{𝑢(𝑐, 𝑥) + 𝛽𝑣(𝑥′)}

s.t. 𝑥′ = 𝑔(𝑥, 𝑐); 𝑐 ∈ ℂ, 𝑥 ∈ 𝕏

Example: Neo-classical growth model

𝑣(𝑘) = max
𝑐

𝔼{log(𝑐) + 𝛽𝑣(𝑘′)}

s.t. 𝑘′ = (1 − 𝛿)𝑘 + 𝑘𝛼 − 𝑐
𝑐 ≥ 0, 𝑘 ≥ 0

¹i.e. conditions do not depend on 𝑡 or the history of the states.
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From discrete time to continuous time

Question: discrete time ⟶ continuous time, how?

𝑣0(𝑥0) = max
{𝑐𝑡}𝑡

𝔼0{∑
𝑇

𝑡=0
𝛽𝑡𝑢(𝑡, 𝑐𝑡, 𝑥𝑡) + 𝑓(𝑥𝑇 )} →?

s.t. 𝑥𝑡+1 = 𝑔(𝑡, 𝑥𝑡, 𝑐𝑡) →?
𝑐𝑡 ∈ ℂ𝑡, 𝑥𝑡 ∈ 𝕏𝑡 →?

Intuitively, everything should be continuous in time:

• Sequence to process: {𝑥𝑡}
𝑇
𝑡=0 ⟶ {𝑥(𝑡)}𝑇

𝑡≥0, or more often 𝑥(⋅)
• Summation of the infinitesimal: ∑𝑇

𝑡=0 𝑢𝑡 ⟶ ∫𝑇
0

𝑢(𝑡, 𝑐(𝑡), 𝑥(𝑡))
• State equation as stochastic process (typically an SDE):

𝑥𝑡+1 = 𝑔(𝑡, 𝑥𝑡, 𝑐𝑡) ⟶  d𝑥(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑐(𝑡))

• In this session, we only discuss the case where 𝑥(𝑡) is a diffusion process,
i.e. 𝑔(𝑡, 𝑥, 𝑐) = 𝜇(𝑡, 𝑥, 𝑐)d𝑡 + 𝜎(𝑡, 𝑥, 𝑐)d𝑊(𝑡)
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From discrete time to continuous time

Then generally, we can write the continuous time problem as the following
stochastic control problem:

𝑣0(𝑥0) = max
𝑐(⋅)

𝔼0{∫
𝑇

0
𝑒−𝜌𝑡𝑢(𝑡, 𝑐(𝑡), 𝑥(𝑡))d𝑡 + 𝑓(𝑥(𝑇 ))}

s.t. d𝑥(𝑡) = 𝜇(𝑡, 𝑥(𝑡), 𝑐(𝑡))d𝑡 + 𝜎(𝑡, 𝑥(𝑡), 𝑐(𝑡))d𝑊(𝑡)
𝑐(𝑡) ∈ ℂ𝑡, 𝑥(𝑡) ∈ 𝕏𝑡

where
• 𝜌 is the discount rate, counterpart of 𝛽 in discrete time
• 𝑥(⋅) is the (controlled) state process, ∀𝑡, 𝑥(𝑡) ∈ ℝ𝑛

• 𝑐(⋅) is the control process, ∀𝑡, 𝑐(𝑡) ∈ ℝ𝑘

• 𝑊(⋅) is the Brownian motion, ∀𝑡, 𝑊(𝑡) ∈ ℝ𝑚

• 𝜇(𝑡, 𝑥, 𝑐) ↦ ℝ𝑛 is the drift coefficient
• 𝜎(𝑡, 𝑥, 𝑐) ↦ ℝ𝑛×𝑚 is the diffusion/volatility coefficient
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From discrete time to continuous time

Example: Neo-classical growth model

Discrete time:

𝑣0(𝑘0) = max
{𝑐𝑡,𝑘𝑡+1}

𝑡

𝔼0{∑
∞

𝑡=0
𝛽𝑡 log(𝑐𝑡)}

s.t. ∀𝑡, 𝑘𝑡+1 = (1 − 𝛿)𝑘𝑡 + 𝑘𝛼
𝑡 − 𝑐𝑡

𝑐𝑡 ≥ 0, 𝑘𝑡 ≥ 0

Continuous time:

𝑣0(𝑘0) = max
𝑐(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡 log(𝑐(𝑡))d𝑡}

s.t. d𝑘(𝑡) = −𝛿𝑘(𝑡) + 𝑘(𝑡)𝛼 − 𝑐(𝑡)
𝑐(𝑡) ≥ 0, 𝑘(𝑡) ≥ 0

Notice:

• continuous discounting
• change of the control variables
• the state equation tells the change of 𝑘(𝑡) now
• the transversality condition: lim𝑡→∞ 𝑒−𝜌𝑡 log(𝑐(𝑡)) = 0
• the 𝑢, 𝑐 are interpreted as flow/rate rather than amount, cp. 𝑐𝑡 in

discrete time and ∫𝑡+Δ𝑡
𝑡

𝑐(𝑡)d𝑡 in continuous time
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From discrete time to continuous time

Practice 1: write the following household consumption-leisure problem
in continuous time:

𝑣0(𝑎0) = max
{𝑐𝑡,𝑎𝑡+1,𝑛𝑡}𝑡

∑
∞

𝑡=0
𝛽𝑡[ 𝑐1−𝛾

𝑡
1 − 𝛾

− 𝑛1+𝜈
𝑡

1 + 𝜈
]

s.t. 𝑐𝑡 + 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 + 𝑤𝑛𝑡
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From discrete time to continuous time

Practice 1: write the following household consumption-leisure problem
in continuous time:

𝑣0(𝑎0) = max
{𝑐𝑡,𝑎𝑡+1,𝑛𝑡}𝑡

∑
∞

𝑡=0
𝛽𝑡[ 𝑐1−𝛾

𝑡
1 − 𝛾

− 𝑛1+𝜈
𝑡

1 + 𝜈
]

s.t. 𝑐𝑡 + 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 + 𝑤𝑛𝑡

Continuous time version:

𝑣0(𝑎0) = max
𝑐(⋅),𝑛(⋅)

∫
∞

0
𝑒−𝜌𝑡[𝑐(𝑡)1−𝛾

1 − 𝛾
− 𝑛(𝑡)1+𝜈

1 + 𝜈
]d𝑡

s.t. d𝑎(𝑡) = {𝑟𝑎(𝑡) + 𝑤𝑛(𝑡) − 𝑐(𝑡)}d𝑡
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From discrete time to continuous time

Practice 2: write the following entrepreneur’s problem in continuous time:

𝑣0(𝑘0, 𝑧0) = max
{𝑐𝑡,𝑘𝑡+1,𝑛𝑡}𝑡

𝔼0{∑
∞

𝑡=0
𝛽𝑡 log(𝑐𝑡)}

s.t. 𝑐𝑡 + 𝑘𝑡+1 = 𝑧𝑡𝑘𝛼
𝑡 𝑛1−𝛼

𝑡 − 𝑤𝑛𝑡

𝑧𝑡 ∼ AR(1) process

Hint: use OU process d𝑧(𝑡) = 𝜃(𝜇 − 𝑧(𝑡))d𝑡 + 𝜎d𝑊(𝑡)
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From discrete time to continuous time

Practice 2: write the following entrepreneur’s problem in continuous time:

𝑣0(𝑘0, 𝑧0) = max
{𝑐𝑡,𝑘𝑡+1,𝑛𝑡}𝑡

𝔼0{∑
∞

𝑡=0
𝛽𝑡 log(𝑐𝑡)}

s.t. 𝑐𝑡 + 𝑘𝑡+1 = 𝑧𝑡𝑘𝛼
𝑡 𝑛1−𝛼

𝑡 − 𝑤𝑛𝑡

𝑧𝑡 ∼ AR(1) process

Hint: use OU process d𝑧(𝑡) = 𝜃(𝜇 − 𝑧(𝑡))d𝑡 + 𝜎d𝑊(𝑡)

Continuous time version:

𝑣0(𝑘0, 𝑧0) = max
𝑐(⋅),𝑛(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡 log(𝑐(𝑡))d𝑡}

s.t. d𝑘(𝑡) = {𝑧(𝑡)𝑘(𝑡)𝛼𝑛(𝑡)1−𝛼 − 𝑤𝑛(𝑡) − 𝑐(𝑡)}d𝑡
d𝑧(𝑡) = 𝜃(𝜇 − 𝑧(𝑡))d𝑡 + 𝜎d𝑊(𝑡)
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From discrete time to continuous time

Practice 3: write the following price setter’s problem with Rotemberg
price rigidity in continuous time:

𝑣0(𝑝0, 𝑦0) = max
{𝑝𝑡+1}

𝑡

𝔼0{∑
∞

𝑡=0
𝛽𝑡𝑦𝑡 ⋅ [𝑝𝑡 − 𝜑

2
(𝑝𝑡+1 − 𝑝𝑡)

2]}

s.t. 𝑦𝑡 ∼ AR(1) process

Hint:
• denote the drift term of 𝑝(𝑡) as ̇𝑝(𝑡)
• the price adjustment cost 𝜑

2 (𝑝𝑡+1 − 𝑝𝑡)
2 ⟶ 𝜑

2 ( ̇𝑝(𝑡))2

• use OU process d𝑦(𝑡)
𝑦(𝑡) = 𝜃(𝜇 − 1)d𝑡 + 𝜎d𝑊(𝑡)

Macroeconomics II, Beihang University 22 / 70



Contents

From discrete time to continuous time

Practice 3: write the following price setter’s problem with Rotemberg
price rigidity in continuous time:

𝑣0(𝑝0, 𝑦0) = max
{𝑝𝑡+1}

𝑡

𝔼0{∑
∞

𝑡=0
𝛽𝑡𝑦𝑡 ⋅ [𝑝𝑡 − 𝜑

2
(𝑝𝑡+1 − 𝑝𝑡)

2]}

s.t. 𝑦𝑡 ∼ AR(1) process

Hint:
• denote the drift term of 𝑝(𝑡) as ̇𝑝(𝑡)
• the price adjustment cost 𝜑

2 (𝑝𝑡+1 − 𝑝𝑡)
2 ⟶ 𝜑

2 ( ̇𝑝(𝑡))2

• use OU process d𝑦(𝑡)
𝑦(𝑡) = 𝜃(𝜇 − 1)d𝑡 + 𝜎d𝑊(𝑡)

𝑣0(𝑝0, 𝑦0) = max
�̇�(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡𝑦(𝑡) ⋅ [𝑝(𝑡) − 𝜑

2
( ̇𝑝(𝑡))2]d𝑡}

s.t. d𝑝(𝑡) = ̇𝑝(𝑡)d𝑡
d𝑦(𝑡) = 𝜃(𝜇 − 1)d𝑡 + 𝜎d𝑊(𝑡)
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Dynamic programming in continuous time

• Bellman’s principle applies to the continuous time case as well

𝑣(𝑡, 𝑥) = max
𝑐𝑡

𝔼𝑡{𝑢(𝑡, 𝑐𝑡, 𝑥𝑡) + 𝛽𝑣(𝑡 + 1, 𝑥𝑡+1)}

s.t. 𝑥𝑡+1 = 𝑔(𝑡, 𝑥𝑡, 𝑐𝑡); 𝑐𝑡 ∈ ℂ𝑡, 𝑥𝑡 ∈ 𝕏𝑡

↓↓↓

𝑣(𝑡, 𝑥) = max
𝑐[𝑡,𝑡+Δ𝑡)

𝔼𝑡{∫
𝑡+Δ𝑡

𝑡
𝑒−𝜌𝑠𝑢(𝑠, 𝑐(𝑠), 𝑥(𝑠))d𝑠 + 𝑒−𝜌Δ𝑡𝑣(𝑡 + Δ𝑡, 𝑥(𝑡 + Δ𝑡))}

s.t. d𝑥(𝑡) = 𝜇(𝑡, 𝑥(𝑡), 𝑐(𝑡))d𝑡 + 𝜎(𝑡, 𝑥(𝑡), 𝑐(𝑡))d𝑊(𝑡)
𝑐(𝑡) ∈ ℂ𝑡, 𝑥(𝑡) ∈ 𝕏𝑡

• Δ𝑡 > 0 is the time increment
• Can be solved exactly by the same method as in discrete time: value

function iteration, policy function iteration, …
• Smaller Δ𝑡, closer to the true solution
• But what if Δ𝑡 → 0? what math tools are needed?
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HJB equation

William Hamilton
Carl Jacobi

Richard Bellman

Hamilton-Jacobi-Bellman (HJB) equation
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HJB equation

• By expanding the continuous time Bellman equation¹, we can derive
the following Hamilton�Jacobi�Bellman (HJB) equation:

𝜌𝑣(𝑡, 𝑥) = max
𝑐

𝑢(𝑡, 𝑐, 𝑥) + 𝜕𝑣
𝜕𝑡

+ 𝜇(𝑡, 𝑥, 𝑐)𝑇 ⋅ ∇𝑥𝑣 + 1
2

tr(𝜎(𝑡, 𝑥, 𝑐)𝜎(𝑡, 𝑥, 𝑐)𝑇 ∇2
𝑥𝑣)

s.t. 𝑐 ∈ ℂ𝑡, 𝑥 ∈ 𝕏𝑡

By defining the 2nd�order infinitesimal generator

ℒ[𝑣] ≔ 𝜕𝑣
𝜕𝑡

+ 𝜇(𝑡, 𝑥, 𝑐)𝑇 ⋅ ∇𝑥𝑣 + 1
2

tr(𝜎(𝑡, 𝑥, 𝑐)𝜎(𝑡, 𝑥, 𝑐)𝑇 ∇2
𝑥𝑣)

The HJB equation is sometimes written as the following variational
inequality:

max{𝑢(𝑡, 𝑐, 𝑥) + ℒ[𝑣] − 𝜌𝑣(𝑡, 𝑥)} = 0

¹Chapter 4.3 of Yong & Zhou (2012), FYI
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HJB equation

𝜌𝑣(𝑡, 𝑥) = max
𝑐

𝑢(𝑡, 𝑐, 𝑥) + 𝜕𝑣
𝜕𝑡

+ 𝜇(𝑡, 𝑥, 𝑐)𝑇 ⋅ ∇𝑥𝑣 + 1
2

tr(𝜎(𝑡, 𝑥, 𝑐)𝜎(𝑡, 𝑥, 𝑐)𝑇 ∇2
𝑥𝑣)

Tips
• 𝜇(𝑡, 𝑥, 𝑐)𝑇 ⋅ ∇𝑥𝑣 ∈ ℝ, inner product of the state drifts and the gradients

of the value function
• 𝜎(𝑡, 𝑥, 𝑐)𝜎(𝑡, 𝑥, 𝑐)𝑇 ∇2

𝑥𝑣 ∈ ℝ𝑛×𝑛, the covariance matrix times the Hessian
of the value function

• 𝜕𝑣
𝜕𝑡 , the time derivative of the value function, ignored in time homoge-
neous problems where 𝑡 can be ignored¹

• The red term, in some contexts, is called the flux term which tells the
mean or deterministic part of how the value function changes over time

• the blue term is called the diffusion term which tells the risk adjustment
of the value function due to the uncertainty

¹d𝑡 = 1d𝑡, thus 1 ⋅ 𝜕𝑣
𝜕𝑡
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HJB equation

𝜌𝑣(𝑡, 𝑥) = max
𝑐

𝑢(𝑡, 𝑐, 𝑥) + 𝜕𝑣
𝜕𝑡

+ 𝜇(𝑡, 𝑥, 𝑐)𝑇 ⋅ ∇𝑥𝑣 + 1
2

tr(𝜎(𝑡, 𝑥, 𝑐)𝜎(𝑡, 𝑥, 𝑐)𝑇 ∇2
𝑥𝑣)

Compared with the discrete time Bellman equation:

• No expectation operator → all expectations about the future’s uncer-
tainty happens in the infinitesimal small time increment d𝑡 and
summarized by the infinitesimal generator ℒ[𝑣] explicitly
‣ which is impossible to do in discrete time

• split of the risk adjustment

• HJB equation is a special kind of 2nd-order non-linear partial differ-
ential equation (PDE) in 𝑡 and 𝑥 (state variables)
‣ elliptic (椭圆) if time homogeneous
‣ parabolic (抛物线) if time non-homogeneous
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HJB equation

Example: Stochastic neo-classical growth model

𝑣(0, 𝑘(0), 𝑧(0)) = max
𝑐(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡 log(𝑐(𝑡))d𝑡}

s.t. d𝑘(𝑡) = −𝛿𝑘(𝑡) + 𝑧(𝑡)𝑘(𝑡)𝛼 − 𝑐(𝑡)
d𝑧(𝑡) = 𝜃(𝜇 − 𝑧(𝑡))d𝑡 + 𝜎d𝑊(𝑡)

↓↓↓

𝑣(𝑡, 𝑘(𝑡), 𝑧(𝑡)) = max
𝑐[𝑡,𝑡+Δ𝑡)

𝔼𝑡{∫
𝑡+Δ𝑡

𝑡
𝑒−𝜌𝑠 log(𝑐(𝑠))d𝑠 + 𝑒−𝜌Δ𝑡𝑣(𝑡 + Δ𝑡, 𝑘(𝑡 + Δ𝑡))}

s.t. d𝑘(𝑡) = (−𝛿𝑘(𝑡) + 𝑘(𝑡)𝛼 − 𝑐(𝑡))d𝑡
d𝑧(𝑡) = 𝜃(𝜇 − 𝑧(𝑡))d𝑡 + 𝜎d𝑊(𝑡)

↓↓↓

𝜌𝑣(𝑡, 𝑘(𝑡), 𝑧(𝑡)) = max
𝑐

log(𝑐) + 𝜕𝑣
𝜕𝑡

+ (−𝛿𝑘(𝑡) + 𝑘(𝑡)𝛼 − 𝑐(𝑡)) ⋅ 𝜕𝑣
𝜕𝑘

+ 𝜃(𝜇 − 𝑧(𝑡)) ⋅ 𝜕𝑣
𝜕𝑧

+ 1
2
𝜎2 𝜕2𝑣

𝜕𝑘2

↓↓↓ (time homogeneity)

𝜌𝑣(𝑘, 𝑧) = max
𝑐

log(𝑐) + (−𝛿𝑘 + 𝑘𝛼 − 𝑐) ⋅ 𝜕𝑣
𝜕𝑘

+ 𝜃(𝜇 − 𝑧) ⋅ 𝜕𝑣
𝜕𝑧

+ 1
2
𝜎2 𝜕2𝑣

𝜕𝑧2
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HJB equation

Practice 1: write the HJB equation for the following household consump-
tion-leisure problem in continuous time:

max
𝑐(⋅),𝑛(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡[𝑐(𝑡)1−𝛾

1 − 𝛾
− 𝑛(𝑡)1+𝜈

1 + 𝜈
]d𝑡}

s.t. d𝑎(𝑡) = {𝑟𝑎(𝑡) + 𝑤(𝑡)𝑛(𝑡) − 𝑐(𝑡)}d𝑡
d𝑤(𝑡) = 𝜃(𝜇 − 𝑤(𝑡))d𝑡 + 𝜎d𝑊(𝑡)

Hint: time homogeneous (does not depend on 𝑡 or the history of the states)
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HJB equation

Practice 1: write the HJB equation for the following household consump-
tion-leisure problem in continuous time:

max
𝑐(⋅),𝑛(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡[𝑐(𝑡)1−𝛾

1 − 𝛾
− 𝑛(𝑡)1+𝜈

1 + 𝜈
]d𝑡}

s.t. d𝑎(𝑡) = {𝑟𝑎(𝑡) + 𝑤(𝑡)𝑛(𝑡) − 𝑐(𝑡)}d𝑡
d𝑤(𝑡) = 𝜃(𝜇 − 𝑤(𝑡))d𝑡 + 𝜎d𝑊(𝑡)

Hint: time homogeneous (does not depend on 𝑡 or the history of the states)

HJB equation:

𝜌𝑣(𝑎, 𝑤) = max
𝑐,𝑛

𝑐1−𝛾

1 − 𝛾
− 𝑛1+𝜈

1 + 𝜈
+ 𝜕𝑣

𝜕𝑎
⋅ (𝑟𝑎 + 𝑤𝑛 − 𝑐) + 𝜕𝑣

𝜕𝑤
⋅ (𝜃(𝜇 − 𝑤)) + 1

2
𝜎2 𝜕2𝑣

𝜕𝑤2
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HJB equation

Practice 2: write the HJB equation for the following price setter’s problem
with Rotemberg price rigidity in continuous time:

𝑣0(𝑝0, 𝑦0) = max
�̇�(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡𝑦(𝑡) ⋅ [𝑝(𝑡) − 𝜑

2
( ̇𝑝(𝑡))2]d𝑡}

s.t. d𝑝(𝑡) = ̇𝑝(𝑡)d𝑡
d𝑦(𝑡) = 𝜃(𝜇 − 1)d𝑡 + 𝜎d𝑊(𝑡)
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HJB equation

Practice 2: write the HJB equation for the following price setter’s problem
with Rotemberg price rigidity in continuous time:

𝑣0(𝑝0, 𝑦0) = max
�̇�(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡𝑦(𝑡) ⋅ [𝑝(𝑡) − 𝜑

2
( ̇𝑝(𝑡))2]d𝑡}

s.t. d𝑝(𝑡) = ̇𝑝(𝑡)d𝑡
d𝑦(𝑡) = 𝜃(𝜇 − 1)d𝑡 + 𝜎d𝑊(𝑡)

HJB equation:

𝜌𝑣(𝑝, 𝑦) = max
�̇�

𝑦 ⋅ [𝑝 − 𝜑
2

( ̇𝑝)2] + 𝜕𝑣
𝜕𝑝

⋅ ̇𝑝 + 𝜕𝑣
𝜕𝑦

⋅ (𝜃(𝜇 − 1)) + 1
2
𝜎2 𝜕2𝑣

𝜕𝑦2
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Practice 3: write the HJB equation for the following homeowner’s
problem:

𝑣0(𝑎0, ℎ0, 𝑧0) = max
𝑐(⋅),𝐼(⋅),𝑛(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡[

[𝑐(𝑡)𝛼ℎ(𝑡)1−𝛼]1−𝛾

1 − 𝛾
− 𝑛(𝑡)1+𝜈

1 + 𝜈
]d𝑡}

s.t. d𝑎(𝑡) = {𝑟𝑎(𝑡) + 𝑧(𝑡)𝑛(𝑡) − 𝑐(𝑡) − [𝐼(𝑡) + 𝜓
2

𝐼(𝑡)2]𝑝 ⋅ ℎ(𝑡)}d𝑡

dℎ(𝑡) = 𝐼(𝑡)d𝑡
d𝑧(𝑡) = 𝜃(𝜇 − 𝑧(𝑡))d𝑡 + 𝜎d𝑊(𝑡)
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HJB equation

Practice 3: write the HJB equation for the following homeowner’s
problem:

𝑣0(𝑎0, ℎ0, 𝑧0) = max
𝑐(⋅),𝐼(⋅),𝑛(⋅)

𝔼0{∫
∞

0
𝑒−𝜌𝑡[

[𝑐(𝑡)𝛼ℎ(𝑡)1−𝛼]1−𝛾

1 − 𝛾
− 𝑛(𝑡)1+𝜈

1 + 𝜈
]d𝑡}

s.t. d𝑎(𝑡) = {𝑟𝑎(𝑡) + 𝑧(𝑡)𝑛(𝑡) − 𝑐(𝑡) − [𝐼(𝑡) + 𝜓
2

𝐼(𝑡)2]𝑝 ⋅ ℎ(𝑡)}d𝑡

dℎ(𝑡) = 𝐼(𝑡)d𝑡
d𝑧(𝑡) = 𝜃(𝜇 − 𝑧(𝑡))d𝑡 + 𝜎d𝑊(𝑡)

HJB equation:

𝜌𝑣(𝑎, ℎ, 𝑧) = max
𝑐,𝐼,𝑛

[𝑐𝛼ℎ1−𝛼]1−𝛾

1 − 𝛾
− 𝑛1+𝜈

1 + 𝜈

+𝜕𝑣
𝜕𝑎

⋅ (𝑟𝑎 + 𝑧𝑛 − 𝑐 − [𝐼 + 𝜓
2

𝐼2]𝑝 ⋅ ℎ) + 𝜕𝑣
𝜕ℎ

⋅ 𝐼 + 𝜕𝑣
𝜕𝑧

⋅ (𝜃(𝜇 − 𝑧)) + 1
2
𝜎2 𝜕2𝑣

𝜕𝑧2

Macroeconomics II, Beihang University 31 / 70



Contents

HJB equation

A more general example:

𝜌𝑣(𝑥) = max
𝑐

𝑢(𝑐) + ∇𝑥𝑣 ⋅ 𝜇 + 1
2

tr[𝜎 ⋅ 𝜎𝑇 ⋅ ∇2
𝑥𝑣]

s.t. d[𝑥1
𝑥2

] = [𝜇1
𝜇2

]d𝑡 + [𝜎11
𝜎21

𝜎12
𝜎22

𝜎13
𝜎23

]
⏟⏟⏟⏟⏟⏟⏟

2×3

d
[
[
[𝑊1

𝑊2
𝑊3]

]
]

Notice: the uncertainty/risk are correlated

The flux term:

∇𝑥𝑣 ⋅ 𝜇 = 𝜕𝑣
𝜕𝑥1

𝜇1 + 𝜕𝑣
𝜕𝑥2

𝜇2

The diffusion term:
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1
2

tr(𝜎 ⋅ 𝜎𝑇 ⋅ ∇2
𝑥𝑣) = 1

2
tr

{{
{{
{
{{
{{

[𝜎11
𝜎21

𝜎12
𝜎22

𝜎13
𝜎23

]
⏟⏟⏟⏟⏟⏟⏟

2×3

⋅
[
[
[𝜎11

𝜎12
𝜎13

𝜎21
𝜎22
𝜎23]

]
]

⏟⏟⏟⏟⏟
3×2

⋅ [𝑣11
𝑣21

𝑣12
𝑣22

]
⏟⏟⏟⏟⏟

2×2
}}
}}
}
}}
}}

= 1
2

tr

{
{
{
{
{
{
{

[
[[

∑𝑗 𝜎2
1𝑗

∑𝑗 𝜎2𝑗𝜎1𝑗

∑𝑗 𝜎1𝑗𝜎2𝑗

∑𝑗 𝜎2
2𝑗 ]

]]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
covariance matrix

⋅ [𝑣11
𝑣21

𝑣12
𝑣22

]

}
}
}
}
}
}
}

= 1
2

tr
[
[[

𝑣11 ⋅ ∑𝑗 𝜎2
1𝑗 + 𝑣21 ⋅ ∑𝑗 𝜎1𝑗𝜎2𝑗

𝑣11 ⋅ ∑𝑗 𝜎2𝑗𝜎1𝑗 + 𝑣21 ⋅ ∑𝑗 𝜎2
2𝑗

𝑣12 ⋅ ∑𝑗 𝜎2
1𝑗 + 𝑣22 ⋅ ∑𝑗 𝜎1𝑗𝜎2𝑗

𝑣12 ⋅ ∑𝑗 𝜎2𝑗𝜎1𝑗 + 𝑣22 ⋅ ∑𝑗 𝜎2
2𝑗]

]]

= 1
2

{{
{{
{
{{
{{

[𝑣11 ⋅ ∑
𝑗

𝜎2
1𝑗 + 𝑣22 ⋅ ∑

𝑗
𝜎2

2𝑗]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

risk adjustment due to Var

+ [𝑣21 ⋅ ∑
𝑗

𝜎1𝑗𝜎2𝑗 + 𝑣12 ⋅ ∑
𝑗

𝜎2𝑗𝜎1𝑗]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

risk adjustment due to Cov (systematic risk) }}
}}
}
}}
}}

• Common in finance models and models caring about systematic risk
• Asymmetric covariance allowed
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HJB equation

(𝑛�independent risks) However, most models in macro fits into the follow-
ing special forms:

d
[
[
[𝑥1

⋮
𝑥𝑛]

]
] =

[
[
[𝜇1

⋮
𝜇𝑛]

]
]d𝑡 +

[
[
[𝜎11

⋱
𝜎𝑛𝑛]

]
]

⏟⏟⏟⏟⏟
2×3

d
[
[
[𝑊1

⋮
𝑊𝑛]

]
]

↓↓↓
1
2

tr[𝜎 ⋅ 𝜎𝑇 ⋅ ∇2
𝑥𝑣] = 1

2
∑

𝑛

𝑖=1
𝜎2

𝑖𝑖 ⋅ 𝑣𝑖𝑖

Implications:
• Every state can be affected by at most one risk source
• In GE, all risks can be expressed as a linear combination of the “final”

risk sources (e.g. TFP shock)
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Solving policy functions

To solve the policy functions, one can simply deriving the first order
condition (FOC) of the RHS of the HJB equation.

Example: stochastic neo-classical growth model

𝜌𝑣(𝑘, 𝑧) = max
𝑐

log(𝑐) + (−𝛿𝑘 + 𝑧𝑘𝛼 − 𝑐) ⋅ 𝜕𝑣
𝜕𝑘

+ 𝜃(𝜇 − 𝑧) ⋅ 𝜕𝑣
𝜕𝑧

+ 1
2
𝜎2 𝜕2𝑣

𝜕𝑧2

Define objective function:

ℋ(𝑐; 𝑘, 𝑧; ∇𝑘,𝑧𝑣; ∇2
𝑘,𝑧𝑣) ≔ log(𝑐) + (−𝛿𝑘 + 𝑧𝑘𝛼 − 𝑐) ⋅ 𝜕𝑣

𝜕𝑘
+ 𝜃(𝜇 − 𝑧) ⋅ 𝜕𝑣

𝜕𝑧
+ 1

2
𝜎2 𝜕2𝑣

𝜕𝑧2

FOC:

𝜕ℋ
𝜕𝑐

= 1
𝑐

− 𝜕𝑣
𝜕𝑘

= 0

⟹ 𝑐 = (𝜕𝑣
𝜕𝑘

)
−1
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Solving policy functions

Compare with the discrete time case:

𝑣(𝑘, 𝑧) = max
𝑐

log(𝑐) + 𝛽𝔼𝑣(𝑘′, 𝑧′)

s.t. 𝑐 + 𝑘′ = (1 − 𝛿)𝑘 + 𝑧𝑘𝛼

𝑧 ∼ AR(1) process

Lagrangian:

ℒ(𝑐; 𝑘, 𝑧) ≔ log(𝑐) + 𝛽𝔼𝑣(𝑘′, 𝑧′) + 𝜆((1 − 𝛿)𝑘 + 𝑧𝑘𝛼 − 𝑐 − 𝑘′)

FOC:

𝜕ℒ
𝜕𝑐

= 1
𝑐

− 𝜆 = 0

⟹ 𝑐 = 𝜆−1

• The Lagrangian multiplier 𝜆 is the shadow value
• In continuous time, the shadow value is 𝜕𝑣

𝜕𝑘
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Solving policy functions

Practice 1: solve the optimal inflation rate for the following price setter’s
problem with Rotemberg price rigidity in continuous time:

𝜌𝑣(𝑝, 𝑦) = max
𝜋

𝑝𝑦 ⋅ (1 − 𝜑
2

𝜋2) + 𝜕𝑣
𝜕𝑝

⋅ 𝜋𝑝 + 𝜕𝑣
𝜕𝑦

⋅ 𝜃(𝑦 − 𝑦) + 1
2
𝜎2𝑦𝜕2𝑣

𝜕𝑦2
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Solving policy functions

Practice 1: solve the optimal inflation rate for the following price setter’s
problem with Rotemberg price rigidity in continuous time:

𝜌𝑣(𝑝, 𝑦) = max
𝜋

𝑝𝑦 ⋅ (1 − 𝜑
2

𝜋2) + 𝜕𝑣
𝜕𝑝

⋅ 𝜋𝑝 + 𝜕𝑣
𝜕𝑦

⋅ 𝜃(𝑦 − 𝑦) + 1
2
𝜎2𝑦𝜕2𝑣

𝜕𝑦2

FOC:

𝜕ℋ
𝜕𝜋

= −𝜑𝑝𝑦𝜋 + 𝑝𝜕𝑣
𝜕𝑝

= 0

⟹ 𝜋 = 𝜑𝑦(𝜕𝑣
𝜕𝑝

)
−1
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Solving policy functions

Practice 2 Solve the policy function for the following household problem
with a liquid asset 𝑎 and an illiquid asset ℎ:

𝜌𝑣(𝑎, ℎ, 𝑧) = max
𝑐,𝐼,𝑛

[𝑐𝛼ℎ1−𝛼]1−𝛾

1 − 𝛾
− 𝑛1+𝜈

1 + 𝜈

+𝜕𝑣
𝜕𝑎

⋅ (𝑟𝑎 + 𝑧𝑛 − 𝑐 − [𝐼 + 𝜓
2

𝐼2]𝑝 ⋅ ℎ) + 𝜕𝑣
𝜕ℎ

⋅ 𝐼ℎ + 𝜕𝑣
𝜕𝑧

⋅ 𝜃(𝜇 − 𝑧) + 1
2
𝜎2 𝜕2𝑣

𝜕𝑧2
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Solving policy functions

Practice 2 Solve the policy function for the following household problem
with a liquid asset 𝑎 and an illiquid asset ℎ:

𝜌𝑣(𝑎, ℎ, 𝑧) = max
𝑐,𝐼,𝑛

[𝑐𝛼ℎ1−𝛼]1−𝛾

1 − 𝛾
− 𝑛1+𝜈

1 + 𝜈

+𝜕𝑣
𝜕𝑎

⋅ (𝑟𝑎 + 𝑧𝑛 − 𝑐 − [𝐼 + 𝜓
2

𝐼2]𝑝 ⋅ ℎ) + 𝜕𝑣
𝜕ℎ

⋅ 𝐼ℎ + 𝜕𝑣
𝜕𝑧

⋅ 𝜃(𝜇 − 𝑧) + 1
2
𝜎2 𝜕2𝑣

𝜕𝑧2

FOC:

𝜕ℋ
𝜕𝑐

= 𝛼ℎ(1−𝛼)(1−𝛾)𝑐𝛼(1−𝛾)−1 − 𝜕𝑣
𝜕𝑎

= 0

𝜕ℋ
𝜕𝐼

= −𝜕𝑣
𝜕𝑎

⋅ [1 + 𝜓𝐼]𝑝ℎ + 𝜕𝑣
𝜕ℎ

ℎ = 0

𝜕ℋ
𝜕𝑛

= −𝑛𝜈 + 𝜕𝑣
𝜕𝑎

𝑧 = 0
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Solving policy functions

which implies:

𝑐 = ( 1
𝛼

𝜕𝑣
𝜕𝑎

)
1

𝛼(1−𝛾)−1

ℎ
(1−𝛼)(1−𝛾)
𝛼(1−𝛾)−1

𝐼 = 1
𝜓

[𝜕𝑣/𝜕ℎ
𝜕𝑣/𝜕𝑎

1
𝑝

− 1]

𝑛 = (𝜕𝑣
𝜕𝑎

𝑧)
1
𝜈

• The level of consumption 𝑐 is static: only depends on the current value
function and the current state ℎ; as well as 𝐼 and 𝑛

• However, consumption is dynamic in nature: charaterized by Euler
equation ⟹ center in understanding the macroeconomic intuitions
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Solving policy functions

Dynamic analysis is the center of macroeconomic models

• Long-run equilibrium (steady state)
• Inter-temporal trade-off
• Transition dynamics
• …

This is done by caring the dynamics of:

• state variables 𝑥(𝑡)
• shadow values 𝜆(𝑡)
• control variables 𝑐(𝑡) (Euler equation)
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Solving policy functions

• Check the textbook example of the growth model in discrete time:

𝑣(𝑘, 𝑧) = max
𝑐,𝑘′

log(𝑐) + 𝛽𝔼{𝑣(𝑘′, 𝑧′)|𝑧}

s.t. 𝑐 + 𝑘′ = (1 − 𝛿)𝑘 + 𝑧𝑘𝛼

FOC:

𝜕ℒ
𝜕𝑐

= 1
𝑐

− 𝜆 = 0

𝜕ℒ
𝜕𝑘′ = 𝛽𝔼𝜕𝑣′

𝜕𝑘′ − 𝜆 = 0

𝜕𝑣′

𝜕𝑘′ = 𝜆′[(1 − 𝛿) + 𝛼𝑧′(𝑘′)𝛼−1] (envelope theorem)

Euler equation: 1
𝑐 = 𝛽𝔼{ 1

𝑐′ [1 − 𝛿 + 𝛼𝑧′(𝑘′)𝛼−1]}

⟹ How to analyze the dynamics of a continuous time model? e.g.

d𝑐(𝑡) =? d(𝜕𝑣/𝜕𝑘) =?
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Dynamic analysis in continuous time

Recall the generic discrete time model:

𝑣(𝑡, 𝑥) = max
𝑐𝑡

𝔼𝑡{𝑢(𝑡, 𝑐𝑡, 𝑥𝑡) + 𝛽𝑣(𝑡 + 1, 𝑥𝑡+1)}

s.t. 𝑥𝑡+1 = 𝑔(𝑡, 𝑥𝑡, 𝑐𝑡); 𝑐𝑡 ∈ ℂ𝑡, 𝑥𝑡 ∈ 𝕏𝑡

Dynamics of the model includes the dynamics of:
• state variables 𝑥𝑡 ⟹ state equation
• shadow values 𝜆𝑡 ⟹ envelope theorem
• control variables 𝑐𝑡 ⟹ Euler equation

We typically do:

{FOC
Envelope theorem ⟹ Euler equation

With the dynamics of the model: inter-temporal trade-off; long-run equi-
librium (steady state); …
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Dynamic analysis in continuous time

In a continuous time model:

𝜌𝑣(𝑡, 𝑥) = max
𝑐

𝑢(𝑡, 𝑐, 𝑥) + 𝜕𝑣
𝜕𝑡

+ 𝜇(𝑡, 𝑥, 𝑐)𝑇 ⋅ ∇𝑥𝑣 + 1
2

tr(𝜎(𝑡, 𝑥, 𝑐)𝜎(𝑡, 𝑥, 𝑐)𝑇 ∇2
𝑥𝑣)

Dynamics of the model includes the dynamics of:
• state variables 𝑥(𝑡) ⟹ state equation d𝑥(𝑡) ✅
• shadow values ∇𝑥𝑣 ⟹ envelope theorem d 𝜕𝑣

𝜕𝑥𝑖
 ❓

• control variables 𝑐(𝑡) ⟹ Euler equation d𝑐(𝑡) ❓

{FOC
Envelope theorem ? ⟹ Euler equation

⟹ Maximum principle¹

¹The continuous time version of the envelope theorem is available but not easy to derive for the stochastic case, while the maximum principle
is much easier to follow.

Macroeconomics II, Beihang University 43 / 70



Contents

Dynamic analysis in continuous time

• Maximum principle, or Pontryagin’s maximum principle (PMP), is a
necessary condition for optimality in continuous time control problems

Figure 3: Lev S. Pontryagin (1908-1988)

• Core in stochastic control theory
• We will only cover the maximum principle in the deterministic case
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Dynamic analysis in continuous time

To understand what PMP does, let’s consider the following deterministic
control problem:

max
𝑐(⋅)

∫
𝑇

0
𝑒−𝜌𝑡𝑢(𝑡, 𝑐(𝑡), 𝑥(𝑡))d𝑡 + 𝑓(𝑥(𝑇 ))

s.t. d𝑥(𝑡) = 𝜇(𝑡, 𝑥(𝑡), 𝑐(𝑡))d𝑡

Define the (generalized) Hamiltonian:

ℋ(𝑐(𝑡); 𝑡, 𝑥(𝑡); {𝜆𝑖(𝑡)}𝑖=1,…,𝑁) ≔ 𝑒−𝜌𝑡𝑢(𝑡, 𝑐(𝑡), 𝑥(𝑡)) + ∑
𝑁

𝑖=1
𝜆𝑖(𝑡) ⋅ 𝜇(𝑡, 𝑥(𝑡), 𝑐(𝑡))

where
• 𝜆𝑖(𝑡) ∈ ℝ is the adjoint variable or co�state, which is the shadow value

of the state variable 𝑥𝑖(𝑡)

Wait a minute! Does the Hamiltonian look familiar?
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Dynamic analysis in continuous time

Recall the objective function of solving the policy functions in HJB:

ℋ(𝑐; 𝑘, 𝑧; ∇𝑘,𝑧𝑣; ∇2
𝑘,𝑧𝑣) ≔ 𝑢(𝑡, 𝑐, 𝑥) + 𝜇(𝑡, 𝑥, 𝑐)𝑇 ⋅ ∇𝑥𝑣 + 1

2
tr(𝜎(𝑡, 𝑥, 𝑐)𝜎(𝑡, 𝑥, 𝑐)𝑇 ∇2

𝑥𝑣)

Drop the uncertainty and write each partial derivative:

ℋ(𝑐; 𝑘, 𝑧; {𝜕𝑣/𝜕𝑥𝑖}𝑖=1,…,𝑁) ≔ 𝑢(𝑡, 𝑐, 𝑥) + ∑
𝑁

𝑖=1

𝜕𝑣
𝜕𝑥𝑖

⋅ 𝜇𝑖(𝑡, 𝑥, 𝑐)

Then, discount to 𝑡 = 0:

ℋ(𝑐; 𝑘, 𝑧; {𝜕𝑣/𝜕𝑥𝑖}𝑖=1,…,𝑁) ≔ 𝑒−𝜌𝑡𝑢(𝑡, 𝑐, 𝑥) + ∑
𝑁

𝑖=1
𝑒−𝜌𝑡 𝜕𝑣

𝜕𝑥𝑖
⋅ 𝜇𝑖(𝑡, 𝑥, 𝑐)

cp. the Hamiltonian in the PMP:

ℋ(𝑐(𝑡); 𝑡, 𝑥(𝑡); {𝜆𝑖(𝑡)}𝑖=1,…,𝑁) ≔ 𝑒−𝜌𝑡𝑢(𝑡, 𝑐(𝑡), 𝑥(𝑡)) + ∑
𝑁

𝑖=1
𝜆𝑖(𝑡) ⋅ 𝜇(𝑡, 𝑥(𝑡), 𝑐(𝑡))

They share the same form!
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Dynamic analysis in continuous time

Intuitively,

𝜆𝑖(𝑡) = 𝑒−𝜌𝑡 𝜕𝑣
𝜕𝑥𝑖

• maximizing the Hamiltonian ⟹ solving the policy functions
• dynamic of the adjoint variable ⟺ dynamics of the shadow value

In addition to finding policy functions, PMP also provides the dynamics
of the adjoint variables, which gives the Euler equations when combined
with the FOCs of the Hamiltonian
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Dynamic analysis in continuous time

When optimal, the adjoint equation as a backward differential equation:

𝑑𝝀(𝑡) = −∇𝑥ℋd𝑡

or respectively ∀𝑖 = 1, …, 𝑁 :

d𝜆𝑖(𝑡) = −𝜕ℋ
𝜕𝑥𝑖

d𝑡 = −{
𝜕(𝑒−𝜌𝑡 ⋅ 𝑢)

𝜕𝑥𝑖
+ ∑

𝑁

𝑗=1
𝜆𝑗(𝑡) ⋅

𝜕𝜇𝑗

𝜕𝑥𝑖
}d𝑡

with a terminal condition (finite horizon):

𝜆𝑖(𝑇 ) = 𝜕𝑓
𝜕𝑥𝑖

(𝑥∗(𝑇 ))

or a transversality condition (infinite horizon):

lim
𝑡→∞

𝑒−𝜌𝑡𝜆𝑖(𝑡) = 0

Intuitively consistent with the envelope theorem
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Dynamic analysis in continuous time

Example: neo-classical growth model

max
𝑐(⋅)

∫
∞

0
𝑒−𝜌𝑡 log(𝑐(𝑡))d𝑡

s.t. d𝑘(𝑡) = −𝛿𝑘(𝑡) + 𝑧𝑘(𝑡)𝛼 − 𝑐(𝑡)

Define Hamiltonian:

ℋ(𝑐(𝑡); 𝑡, 𝑘(𝑡); 𝜆𝑘(𝑡)) ≔ 𝑒−𝜌𝑡 log(𝑐(𝑡)) + 𝜆𝑘(𝑡) ⋅ [−𝛿𝑘(𝑡) + 𝑧𝑘(𝑡)𝛼 − 𝑐(𝑡)]

Policy function by maximizing the Hamiltonian:

𝑐(𝑡) = (𝑒𝜌𝑡𝜆𝑘(𝑡))−1 = (𝜕𝑣
𝜕𝑘

)
−1

Adjoint equation:

d𝜆𝑘(𝑡) = −𝜆𝑘(𝑡) ⋅ [−𝛿 + 𝛼𝑧𝑘(𝑡)𝛼−1]d𝑡
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Dynamic analysis in continuous time

Adjoint equation:

d𝜆𝑘(𝑡) = −𝜆𝑘(𝑡) ⋅ [−𝛿 + 𝛼𝑧𝑘(𝑡)𝛼−1]d𝑡

⟹ d𝜆𝑘(𝑡)
𝜆𝑘(𝑡)

= [𝛼𝑧𝑘(𝑡)𝛼−1 − 𝛿]d𝑡

• Interpretation: the growth rate of the shadow value of capital is equal
to the net marginal return of increasing one unit of capital

• Trick: When d𝑥(𝑡)
𝑥(𝑡)  is small, d log(𝑥(𝑡)) is a good approximation

‣ Apply Ito’s lemma if needed

⟹ How to derive the Euler equation then?
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Dynamic analysis in continuous time

Recall the FOC of the Hamiltonian:

1
𝑐(𝑡)

= 𝑒𝜌𝑡𝜆𝑘(𝑡)

Knowing that 𝑐 > 0, take the log:

− log(𝑐(𝑡)) = 𝜌𝑡 + log(𝜆𝑘(𝑡))

Take time derivative:

−d𝑐(𝑡)
𝑐(𝑡)

= 𝜌d𝑡 + d𝜆𝑘(𝑡)
𝜆𝑘(𝑡)

Plugging it into the adjoint equation:

d𝜆𝑘(𝑡)
𝜆𝑘(𝑡)

= −d𝑐(𝑡)
𝑐(𝑡)

− 𝜌d𝑡 = [𝛼𝑧𝑘(𝑡)𝛼−1 − 𝛿]d𝑡
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Dynamic analysis in continuous time

Plugging it into the adjoint equation:

d𝜆𝑘(𝑡)
𝜆𝑘(𝑡)

= −d𝑐(𝑡)
𝑐(𝑡)

− 𝜌d𝑡 = [𝛼𝑧𝑘(𝑡)𝛼−1 − 𝛿]d𝑡

Then, we get the Euler equation:

d𝑐(𝑡)
𝑐(𝑡)

= [𝜌 − (𝛼𝑧𝑘(𝑡)𝛼−1 − 𝛿)]d𝑡

Interpretation:

• The Euler equation tells us how the consumption growth rate changes
over time

• The consumption growth rate trade-off between the marginal return of
capital and the subjective discount rate

• If it is more profitable to invest in capital: reduce consumption
• If it is less profitable to invest in capital: increase consumption
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Dynamic analysis in continuous time

• (Deterministic) steady state is the long-run equilibrium of the model
‣ No uncertainty (turned off)
‣ No growth
‣ No allocation change over time

In SS, nothing changes over time:
• 𝑥(𝑡) ≡ 𝑥 ⟹ d𝑥(𝑡) = 0
• 𝑐(𝑡) ≡ 𝑐 ⟹ d𝑐(𝑡) = 0

while
• the adjoint variables decays at the discounting rate: d𝜆(𝑡)

𝜆(𝑡) = −𝜌d𝑡
• or equivalently, d𝜕𝑣

𝜕𝑥 = 0
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Dynamic analysis in continuous time

Consider the neo-classical growth model example:

d𝑘(𝑡) = [−𝛿𝑘(𝑡) + 𝑧𝑘(𝑡)𝛼 − 𝑐(𝑡)]d𝑡
d𝑐(𝑡)
𝑐(𝑡)

= [𝜌 − (𝛼𝑧𝑘(𝑡)𝛼−1 − 𝛿)]d𝑡

In SS,

d𝑘(𝑡) = 0 ⟹ −𝛿𝑘 + 𝑧𝑘𝛼 − 𝑐 = 0
d𝑐(𝑡)
𝑐(𝑡)

= 0 ⟹ 𝜌 − (𝛼𝑧𝑘𝛼−1 − 𝛿) = 0

which gives us the steady state of the model:

𝑘 = ( 𝛼𝑧
𝜌 + 𝛿

)
1

1−𝛼

𝑐 = −𝛿𝑘 + 𝑧𝑘𝛼
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Compare with the discrete time version:

𝑣(𝑘) = max
𝑐,𝑘′

log(𝑐) + 𝛽𝑣(𝑘′)

s.t. 𝑐 + 𝑘′ = (1 − 𝛿)𝑘 + 𝑧𝑘𝛼

Euler equation:

𝑐′

𝑐
= 𝛽[1 − 𝛿 + 𝛼𝑧(𝑘′)𝛼−1]

In SS,

𝑐 + 𝑘 = (1 − 𝛿)𝑘 + 𝑧𝑘𝛼

𝑐
𝑐

= 1 = 𝛽[1 − 𝛿 + 𝛼𝑧(𝑘)
𝛼−1

]

Steady state:

𝑘 = ( 𝛼𝑧
𝛽−1 − (1 − 𝛿)

)
1

1−𝛼

𝑐 = −𝛿𝑘 + 𝑧𝑘𝛼
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Dynamic analysis in continuous time

Bridging the two:

Discrete time version:

𝑘 = ( 𝛼𝑧
𝛽−1 − 1 + 𝛿

)
1

1−𝛼

Continuous time version:

𝑘 = ( 𝛼𝑧
𝜌 + 𝛿

)
1

1−𝛼

By definition,

𝛽 = 𝑒−𝜌Δ𝑡

When 𝜌 is small, the following approximation holds:

𝛽−1 − 1 ≈ 𝜌Δ𝑡

Let Δ𝑡 be 1, the two versions are consistent with each other

Macroeconomics II, Beihang University 56 / 70



Contents

Dynamic analysis in continuous time

Practice 1: solve the necessary condition between 𝜌 and 𝑟 of the following
household problem for SS existing:

𝜌𝑣(𝑎) = max
𝑐

𝑐1−𝛾

1 − 𝛾
+ 𝜕𝑣

𝜕𝑎
⋅ (𝑟𝑎 − 𝑐)

Hint:
• Step 1: define Hamiltonian
• Step 2: derive the policy function
• Step 3: derive the adjoint equation
• Step 4: derive the Euler equation
• Step 5: solve the SS of the model
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Dynamic analysis in continuous time

Define Hamiltonian:

ℋ ≔ 𝑒−𝜌𝑡 𝑐1−𝛾

1 − 𝛾
+ 𝜆𝑎 ⋅ (𝑟𝑎 − 𝑐)

Solve policy function:

𝑐 = (𝑒𝜌𝑡𝜆𝑎)−1
𝛾

Adjoint equation:

d𝜆𝑎
𝜆𝑎

= −𝑟d𝑡
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Dynamic analysis in continuous time

Derive Euler equation:

log(𝑐) = −1
𝛾

[𝜌𝑡 + log(𝜆𝑎)] ⟹ d𝜆𝑎
𝜆𝑎

= −𝛾d𝑐
𝑐

− 𝜌d𝑡

⟹ d𝑐
𝑐

= 1
𝛾

(𝑟 − 𝜌)d𝑡

If SS exists, then 𝑐 is constant over time such that d𝑐
𝑐 = 0

1
𝛾

(𝑟 − 𝜌)d𝑡 = 0

⟹ 𝑟 = 𝜌

which is consistent with the intuition of the model, also the standard
theory result in the discrete time model
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Dynamic analysis in continuous time

Practice 2 (optional): Consider an entrepreneur who can invest in two
assets: a liquid capital 𝑘 of price 1 and an illiquid productive housing
wealth ℎ of price 𝑝.

𝜌𝑣(𝑘, ℎ) = max
𝑐,𝐼ℎ

𝑐1−𝛾

1 − 𝛾

+𝜕𝑣
𝜕𝑘

⋅ [𝑧𝑘𝛼ℎ1−𝛼 − 𝛿𝑘𝑘 − 𝑐 − (𝐼ℎ + 𝜓
2

𝐼2
ℎ)𝑝 ⋅ ℎ] + 𝜕𝑣

𝜕ℎ
⋅ (𝐼ℎ − 𝛿ℎ)ℎ

Question: Solve the house price 𝑝 that allows the SS to hold

Hint:
• Step 1: define Hamiltonian, solve the policy functions
• Step 2: derive the adjoint equations (and the Euler equations if needed)
• Step 3: combining the above equations to solve the steady state condi-

tions
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Dynamic analysis in continuous time

Define Hamiltonian (discounting to 𝑡 = 0):

ℋ ≔ 𝑒−𝜌𝑡 𝑐1−𝛾

1 − 𝛾
+ 𝜆𝑘 ⋅ [𝑧𝑘𝛼ℎ1−𝛼 − 𝛿𝑘𝑘 − 𝑐 − (𝐼ℎ + 𝜓

2
𝐼2
ℎ)𝑝 ⋅ ℎ] + 𝜆ℎ ⋅ (𝐼ℎ − 𝛿ℎ)ℎ

Policy functions:

𝑐 = (𝑒𝜌𝑡𝜆𝑘)−1
𝛾 , 𝐼ℎ = 1

𝜓
[𝜆ℎ
𝜆𝑘

1
𝑝

− 1]

Adjoint equations:

d𝜆𝑘
𝜆𝑘

= −[𝛼𝑧𝑘𝛼−1ℎ1−𝛼 − 𝛿𝑘]d𝑡

d𝜆ℎ
𝜆ℎ

= −𝜆𝑘
𝜆ℎ

⋅ [(1 − 𝛼)𝑧𝑘𝛼ℎ−𝛼 − (𝐼ℎ + 𝜓
2

𝐼2
ℎ)𝑝]d𝑡 − (𝐼ℎ − 𝛿ℎ)d𝑡
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In SS, the state equations

dℎ = 0 ⟹ 𝐼ℎ = 𝛿ℎ

d𝑘 = 0 ⟹ 𝑧𝑘𝛼ℎ1−𝛼 − 𝛿𝑘𝑘 − 𝑐 − (𝛿ℎ + 𝜓
2

𝛿2
ℎ)𝑝 ⋅ ℎ = 0

the adjoint variables decays at the discounting rate 𝜌:

−𝜌d𝑡 = −[𝛼𝑧𝑘𝛼−1ℎ1−𝛼 − 𝛿𝑘]d𝑡

−𝜌d𝑡 = −𝜆𝑘

𝜆ℎ
⋅ [(1 − 𝛼)𝑧𝑘𝛼ℎ−𝛼 − (𝛿ℎ + 𝜓

2
𝛿2
ℎ)𝑝]

Notice the SS also satisfies the policy functions:

𝐼ℎ = 𝛿ℎ = 1
𝜓

[𝜆ℎ

𝜆𝑘

1
𝑝

− 1] ⟹ 𝜆ℎ

𝜆𝑘
= 𝑝(𝜓𝛿ℎ + 1)
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Plugging it into the SS adjoint equation:

−𝜌 = −𝛼𝑧𝑘𝛼−1ℎ1−𝛼 + 𝛿𝑘

−𝜌 = −𝑝(𝜓𝛿ℎ + 1) ⋅ [(1 − 𝛼)𝑧𝑘𝛼ℎ−𝛼 − (𝛿ℎ + 𝜓
2

𝛿2
ℎ)𝑝]

Cancel out 𝑘/ℎ and get:

(𝛿ℎ + 𝜓
2

𝛿2
ℎ)𝑝 + (1 − 𝛼)𝑧( 𝛼𝑧

𝛿𝑘 + 𝜌
)

𝛼
1−𝛼

= 𝜌
𝑝(𝜓𝛿ℎ + 1)

This equation has two real roots, crazy but analytical

FYI: does this model have unique SS? If yes, how to prove it? If no, why?

FYI: can you derive the counterpart in discrete time?
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(Optional) Numerical methods

• Numerical solutions are necessary for more complex continuous time
models

• Nature of the problem: a free-boundary value PDE problem (fBVP)

• Available methods:
‣ Finite difference methods (FDM)
‣ Finite element methods (FEM)
‣ Finite volume methods (FVM)
‣ Spectral methods
‣ Machine learning methods (e.g. neural networks)
‣ Dynamic programming methods
‣ …

• Currently, FDM is the most common method in economics
‣ Pros: straightforward, non-parametric
‣ Cons: dimensionality curse, convergence, regular grid, …
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(Optional) Numerical methods

Finite difference method (FDM)

𝜌𝑣(𝑡, 𝑥) = max
𝑐

𝑢(𝑡, 𝑐, 𝑥) + 𝜕𝑣
𝜕𝑡

+ 𝜇(𝑡, 𝑥, 𝑐)𝑇 ⋅ ∇𝑥𝑣 + 1
2

tr(𝜎(𝑡, 𝑥, 𝑐)𝜎(𝑡, 𝑥, 𝑐)𝑇 ∇2
𝑥𝑣)

• This is a PDE:
‣ 𝜕𝑣

𝜕𝑡

‣ ∇𝑥𝑣 = ( 𝜕𝑣
𝜕𝑥1

, …, 𝜕𝑣
𝜕𝑥𝑁

)
𝑇

‣ ∇2
𝑥𝑣 = ( 𝜕2𝑣

𝜕𝑥𝑖𝜕𝑥𝑗
)

{𝑖,𝑗=1}

• Idea: use finite difference to approximate the derivatives
‣ Forward difference, e.g. 𝜕𝑣

𝜕𝑡 ≈ 𝑣(𝑡+Δ𝑡)−𝑣(𝑡)
Δ 𝑡

‣ Backward difference, e.g. 𝜕𝑣
𝜕𝑡 ≈ 𝑣(𝑡)−𝑣(𝑡−Δ𝑡)

Δ 𝑡
‣ Central difference, e.g. 𝜕𝑣

𝜕𝑡 ≈ 𝑣(𝑡+Δ𝑡)−𝑣(𝑡−Δ𝑡)
2Δ𝑡

• For the 2nd-order derivatives, e.g. 𝜕2𝑣
𝜕𝑥2

𝑖
≈ 𝑣(𝑥+Δ𝑥𝑖)−2𝑣(𝑥)+𝑣(𝑥−Δ𝑥𝑖)

Δ𝑥2
𝑖

• Which kind of appoximations to use is not trivial
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(Optional) Numerical methods

• Practical FDM needs another single course

• Some concepts that you need to know:
‣ Boundary conditions, free boundary problems, and singularities
‣ Numerical scheme for FDM
‣ FDM convergence analysis

– Convergence
– Consistency
– Stability
– Monotonicity

‣ Barles-Souganidis theorem

Barles, G., & Souganidis, P. E. (1991). Convergence of approximation
schemes for fully nonlinear second order equations. Asymptotic Analysis,
4(3), 271–283.
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(Optional) Numerical methods

FYI,

• Lecture notes and code:
‣ Benjamin Moll’s website: [https://benjaminmoll.com/]
‣ esp. applications in heterogeneous agent models and HANK

• Papers:

Kaplan, G., Moll, B., & Violante, G. L. (2018). Monetary policy according
to HANK. American Economic Review, 108(3), 697–743.
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Frontier topics

• Heterogenous agent (HA) models e.g. HANK

• Perturbation methods for continuous time models, esp. HA models

• High-dimensional methods for continuous time models

• Machine learning methods for continuous time models
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